Research project offer

Location : ISAE SUPAERO, Toulouse, France

Department : DMSM

information

Research group: ICA "Joining" transversal axis [MS2M and SUMO]

Supervisor : Santiago FRUTOS TARAVILLO, Yann LANDON, Éric PAROISSIEN, Sébastien SCHWARTZ

Email : <u>santiago.frutos-taravillo@airbus.com</u>, <u>yann.landon@univ-tlse3.fr</u>, <u>eric.paroissien@isae-supaero.fr</u>, <u>sebastien.schwartz@isae-supaero.fr</u>

OFFER DESCRIPTION			
Title: Finite Element Simulation of drilling burr formation in metallic materials			
Proposed durat	ion an	d period : 6/7 months from January 2025 (flexible starting date)	
Context T nee esp		e increasing demand for high-quality structures at lower costs, particularly in aeronautics, emphasizes the to enhance current manufacturing technologies. In this context, drilling is a crucial manufacturing process, ecially for the assembly processes using fasteners.	
	Hav streng main H streng	Having a comprehensive understanding of the influence of drilling conditions on hole quality and structural ength (static and fatigue) is essential to enable safe optimization of manufacturing processes. Today, one of the ain hole quality problems in drilling is the generation of burrs , which are costly to remove and reduce structural ength of mechanical joints if not carefully eliminated.	
	Prev the co under simula intere	Previous studies on the influence of drilling conditions on burr formation are mostly experimental. Moreover, e conclusions of these studies are in many cases contradictory, which is due to the lack of a thorough iderstanding of the drilling burr formation process. The development of numerical approaches, by finite element mulation , to better understand this process and to develop predictive capabilities is therefore of great industrial terest.	
	This challer comes assem	topic comes as a continuation of a previous 2024 internship, which served to identify the main practical nges related to burr formation simulation and to develop some simplified ABAQUS models. The topic also as support of a PhD Thesis (Airbus) on the study of the impact of burrs on the fatigue strength of metallic blies of aircraft structures.	
Objectives and work	•	 Comparative study of different material constitutive laws (thermal and viscoplastic effects), contact laws for finite element simulation of drilling burr formation CAD modelling of tooling and workpiece Finite element simulation of drilling process, focused on burr formation study. Model validation with experimental data (Optional) Automatization of finite element simulation through scripting 	
Possibility to continue with a PhD (Yes/No) : No			
REQUIRED APPLICANT PROFILE AND SKILLS			
Study level (tick possible choices)		 Undergraduate students (3rd or 4th year) Master students (1st or 2nd year) PhD students 	
Required profile and skills		This offer is suitable to students in last year of MSc, MEng in Solids Mechanics, Structures Mechanics.	
		The expected specific skills are :	
		Fundamentals of strength of materials	
		Basics on the FE method	
Other useful		Feel free to take contact	